Enhancement by polydispersity of the biaxial nematic phase in a mixture of hard rods and plates.
نویسندگان
چکیده
The phase diagram of a polydisperse mixture of uniaxial rodlike and platelike hard parallelepipeds is determined for aspect ratios kappa=5 and 15. All particles have equal volume, and polydispersity is introduced in a highly symmetric way. The corresponding binary mixture is known to have a biaxial phase for kappa=15, but to be unstable against demixing into two uniaxial nematics for kappa=5. The phase diagram for kappa=15 is qualitatively similar to that of the binary mixture, regardless of the amount of polydispersity, while for kappa=5 a sufficient amount of polydispersity stabilizes the biaxial phase. This provides clues for designing an experiment to observe this long searched biaxial phase.
منابع مشابه
Ordering transitions, biaxiality, and demixing in the symmetric binary mixture of rod and plate molecules described with the Onsager theory.
The phase behavior of a liquid-crystal forming binary mixture of generic hard rodlike and platelike particles is studied with the theory of Onsager [L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949)] for nematic ordering. The mixture is chosen to be symmetric at the level of the second virial theory, so that the phase behavior of the two pure components is identical. A parameter q is used to qua...
متن کاملPolydispersity stabilizes biaxial nematic liquid crystals.
Inspired by the observations of a remarkably stable biaxial nematic phase [van den Pol et al., Phys. Rev. Lett. 103, 258301 (2009)], we investigate the effect of size polydispersity on the phase behavior of a suspension of boardlike particles. By means of Onsager theory within the restricted orientation (Zwanzig) model we show that polydispersity induces a novel topology in the phase diagram, w...
متن کاملDemixing in a hard rod-plate mixture
We argue that the possibility to observe a stable biaxial nematic phase in a binary mixture of prolate and oblate hard particles is seriously limited by the existence of entropydriven demixing. This result follows from a simple Onsager-type density functional theory. An important feature15 the coupling of the demixing mechanism to the orientational order of the system. The strength of this coup...
متن کاملCubatic phase for tetrapods.
We investigate the phase behavior of tetrapods, hard nonconvex bodies formed by four rods connected under tetrahedral angles. We predict that, depending on the relative lengths of the rods these particles can form a uniaxial nematic phase, and more surprisingly they can exhibit a cubatic phase, a special case of the biaxial nematic phase. These predictions may be experimentally testable, as exp...
متن کاملLiquid-crystalline phase behavior of a colloidal rod-plate mixture.
The phase behavior of rod-plate mixtures was investigated using model systems containing unambiguously rod- and plate-shaped colloids. We find that the theoretically disputed biaxial nematic phase is unstable with respect to demixing into an isotropic and two uniaxial nematic phases. The phase behavior at very high densities is exceptionally rich and includes the coexistence of up to four diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 89 18 شماره
صفحات -
تاریخ انتشار 2002